Krapivsky-Redner modification of nonlinear Barabási-Albert networks

Muneer A. Sumour¹, Francisco W. S. Lima ²

¹Physics Department, Al-Aqsa University, P.O.Box 4051, Gaza, Gaza Strip, Palestine, ²Dietrich Stauffer Computational Physics Lab, Departamento de Física, Universidade Federal do Piauí, 64049-550, Teresina - PI, Brazil.

ma.sumoor@alaqsa.edu.ps
fwslima@gmail.com

Received 13/3/2018 Accepted 21/6/2018

Abstract:

In growing Barabási-Albert (BA) networks, a new node randomly selects an existing target node and attaches to it randomly with a probability r proportional to the number k of neighbors already attached to the target node. Krapivsky and Redner use, also for different networks: "a new node randomly selects an existing target node, but attaches to a random neighbor of this target." In nonlinear BA networks, r is made proportional to k^α with $\alpha = 1$ for the standard BA case. We simulate here nonlinear Barabási-Albert-Krapivsky-Redner (BAKR) networks, where r is applied to the selection of the target, not to the selection of the target neighbor. We use undirected Barabási-Albert networks. For the maximum number kmax of neighbors we find little effect from α, while the distribution n(k) of the number of neighbors has a normal power law and there is no gap or strong peak in the number of neighbors k(i). All this contradicts our earlier simulations without redirection.

Keywords: Barabasi Albert network, probability, number of neighbors, nodes.
Introduction:

Barabási Albert networks (BA) and their modifications have been studied for several years[1,2]. We studied the nonlinear Barabási-Albert network (NLBA) where a new node connects to a vertex having k neighbors with a probability r [3] proportional to k^α real; usually $\alpha = 1$. Each new node adds m new edges to the network, and we developed two versions from this model NLBA1 and NLBA2 [4,5]. We now study the modification of Krapivsky and Redner who use, also for different networks: “a new node randomly selects an existing target node, but attaches to a random neighbor of this target” [6,7].

Krapivsky-Redner networks use redirection as a fundamental network growth mechanism to determine how a new node n attaches to a growing network. For undirected networks, without a prescribed direction for each link, redirection is implemented as a new node n chooses from all already existing nodes a provisional target node at random, with probability $0 < r < 1$. Then a randomly selected neighbor of the target attaches to the ancestor n of the target. We now investigate nonlinear Barabási-Albert-Krapivsky-Redner (BAKR) networks, where r is applied to the selection of the target, not to the selection of the target neighbor. We use undirected nonlinear Barabási-Albert networks.

Data and Simulation:

In our simulations we use the Fortran program of BAKR as in the appendix. In the simple version, it uses a rectangular array $\text{neighb}(\text{maxnb, max})$, where max = N + m is the network size and maxnb the maximum number of neighbors for a single node. With small networks, we start with a parameter maxnb = 1.1*maxtime*m, but in large networks, we use maxnb = 0.9*maxtime*m, since we must adjust the parameter maxnb with small N such that it is never smaller than the maximum k_{\max} of the number of neighbors $k(i)$ over all node indices i. With maxnb=max*m one has the absolute maximum: each of the max new nodes n produces m new neighbor bonds. However, our first tests show that k_{\max} is much smaller, and then one can save memory by using a smaller parameter maxnb. When we vary α between 0.1 and 1.9, with
Krapivsky-Redner modification of nonlinear Barabási-Albert networks

$m = 4$, and observe values of k_{max}, of the number of neighbors $k(i)$ of node i, and of the number $n(k)$ of nodes with k neighbors, we notice no gaps, no strong peaks, and normal power law in the $n(k)$, and k_{max} varies little with varying values of α. We simulate different values of lattice size ($N=1000, 2000, 4000, 8000, 16000, 22000$) with α up to 0.1 with constant values of $m=4$. For $N=16000$ and 22000 nodes, we used Allocatable command of fortran90 because maxnb is large. We use a logarithmic scale at the y-axis (k_{max}) to let results become clearer, and show k_{max} for small and large N in figure (1).

Figure (1): k_{max} versus α up to 0.1 for different size N
Figure (2) shows k_{\max} versus α for larger values of α up to 1.9.

Now we fix $N=22000$, $m=4$, but change α from 0.1 to 1.9, and we get figure (3) which shows the number of $k(i)$ of neighbors versus index of nodes i.
Krapivsky-Redner modification of nonlinear Barabási-Albert networks

Figure(3): number $k(i)$ of neighbors versus index of nodes I with $m=4$ and $N=16000$ as example.

When we fix α at 0.5 and 1.5 with changing size N from 1000 to 7000 at constant $m=2,4,8,16,32,64,128,256$. We get figure 4. It shows that k_{max} increases roughly proportional size N at fixed α and number m of neighbors.
Figure(4): kmax versus size N versus at α 0.5 [m=8(*) m=4(+)] and α 1.5[m=4(empty squ.) m=8(x)].

We see that kmax is always much smaller than N, in particular there is no strong dependence of kmax on α, while in [4] we found kmax to increase strongly up to close to the theoretical maximum N*m for $\alpha > 1.5$.

We simulate many values of m=2,4,8,16,32,64,128,256 as we can in our computers, for small $\alpha=0.5$ and with size = 1000, and we take nklog is the sum over all n(k) within an interval proportional to k, the n(k) vary roughly as 1/k**3, while the slope in our curves in figure(5) is close to -2.
Krapivsky-Redner modification of nonlinear Barabási-Albert networks

Figure (5): $n(k)$ versus k versus $\alpha^{0.5}$ [m=2,4,8,16,32,64,128,256 from bottom to top with N=1000].

Finally, we plot figure 6 as k_{max} versus different m which shows us the relation between k_{max} and m which is: k_{max} proportional directly to m.

Journal of Al Azhar University-Gaza (Natural Sciences), 2018, 20 (83)
Figure (6): kmax versus m at α = 0.5 with multiple of m

Conclusion:

We observed no gaps in k(i), no peaks in k(i), no strong variation of kmax versus α with the Krapivsky-Redner modification. We see that kmax is always much smaller than N, in particular far below the theoretical maximum N*m. All these results differ from our earlier simulations without redirection [3,4,5].

Acknowledgments

The authors are grateful to Dietrich Stauffer for stimulating discussions and for a critical reading of the manuscript. F. W. S. L. acknowledges the Brazilian agency CNPQ for its financial support and this work also was supported the system SGI Altix 1350, the computational park CENAPAD. UNICAMP-USP, SP-BRAZIL and Dietrich Stauffer Computational Physics Lab-TERESINA-PIAÚI-BRAZIL.
Krapivsky-Redner modification of nonlinear Barabási-Albert networks

References: